6 research outputs found

    Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b \u3csup\u3e+\u3c/sup\u3eLy6G\u3csup\u3e+\u3c/sup\u3e immature myeloid cells

    Get PDF
    Histidine decarboxylase (HDC), the unique enzyme responsible for histamine generation, is highly expressed in myeloid cells, but its function in these cells is poorly understood. Here we show that Hdc-knockout mice show a high rate of colon and skin carcinogenesis. Using Hdc-EGFP bacterial artificial chromosome (BAC) transgenic mice in which EGFP expression is controlled by the Hdc promoter, we show that Hdc is expressed primarily in CD11b +Ly6G+ immature myeloid cells (IMCs) that are recruited early on in chemical carcinogenesis. Transplant of Hdc-deficient bone marrow to wild-type recipients results in increased CD11b + Ly6G + cell mobilization and reproduces the cancer susceptibility phenotype of Hdc-knockout mice. In addition, Hdc-deficient IMCs promote the growth of tumor allografts, whereas mouse CT26 colon cancer cells downregulate Hdc expression through promoter hypermethylation and inhibit myeloid cell maturation. Exogenous histamine induces the differentiation of IMCs and suppresses their ability to support the growth of tumor allografts. These data indicate key roles for Hdc and histamine in myeloid cell differentiation and CD11b+Ly6G+IMCs in early cancer development. © 2011 Nature America, Inc. All rights reserved

    Bone marrow-derived epithelial cells and hair follicle stem cells contribute to development of chronic cutaneous neoplasms

    Get PDF
    We used allogeneic bone marrow transplantation (BMT) and a mouse multistage cutaneous carcinogenesis model to probe recruitment of bone marrow-derived epithelial cells (BMDECs) in skin tumors initiated with the carcinogen, dimethylbenz[a]anthracene (DMBA), and promoted with 12-O-tetradecanolyphorbol-13-acetate (TPA). BMDECs clustered in the lesional epithelium, expressed cytokeratins, proliferated, and stratified. We detected cytokeratin induction in plastic-adherent bone marrow cells (BMCs) cultured in the presence of filter-separated keratinocytes (KCs) and bone morphogenetic protein 5 (BMP5). Lineage-depleted BMCs migrated towards High Mobility Group Box 1 (HMGB1) protein and epidermal KCs in ex vivo invasion assays. Naive female mice receiving BMTs from DMBA-treated donors developed benign and malignant lesions after TPA promotion alone. We conclude that BMDECs contribute to the development of papillomas and dysplasia, demonstrating a systemic contribution to these lesions. Furthermore, carcinogen-exposed BMCs can initiate benign and malignant lesions upon tumor promotion. Ultimately, these findings may suggest targets for treatment of non-melanoma skin cancers

    Bone marrow-derived epithelial cells and hair follicle stem cells contribute to development of chronic cutaneous neoplasms

    Get PDF
    Bone marrow-derived epithelial cells can be recruited to sites of chronic inflammation. Here, the authors using allogenic bone marrow transplantation in a multistage murine cutaneous carcinogenesis model show that bone marrow-derived epithelial cells and hair follicle stem cells are recruited to cutaneous neoplasms during tumor promotion of carcinogen-exposed skin and bone marrow

    Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells

    No full text
    Histidine decarboxylase (HDC), the unique enzyme responsible for histamine generation, is highly expressed in myeloid cells but its function is poorly understood. Here, we show that Hdc knockout mice exhibit a markedly increased rate of colon and skin carcinogenesis. Using Hdc-EGFP BAC transgenic mice, we demonstrate that Hdc is expressed primarily in CD11b(+)Ly6G(+) immature myeloid cells (IMCs) that are recruited early on in chemical carcinogenesis. Transplant of Hdc-deficient bone marrow to wildtype recipients results in increased CD11b(+)Ly6G(+) cell mobilization and reproduces the cancer susceptibility phenotype. In addition, IMCs from Hdc knockout mice promote the growth of cancer xenografts and colon cancer cells downregulate Hdc expression through promoter hypermethylation and inhibits myeloid cell maturation. Exogenous histamine induces the differentiation of IMCs and suppresses their ability to support the growth of xenografts. These data indicate key roles for Hdc and histamine in myeloid cell differentiation, and CD11b(+)Ly6G(+) IMCs in early cancer development
    corecore